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Diabetes is an increasing global health issue, with millions at risk due to
factors like lifestyle, genetics, and other health conditions. Early diagnosis is
essential for timely treatment, avoiding complications, and easing the strain
on healthcare systems. The disease’s complexity, with its different stages,
requires advanced models that can distinguish between diabetic, non-diabetic,
and pre-diabetic individuals. This study aimed to develop a precise multiclass
classification model to predict a patient’s diabetes status based on various
health indicators. In addition to standard factors like blood sugar level, BMI,
cholesterol, and age, external risk factors have also been considered for better
accuracy. In the current study, the target variable categorizes patients as
Diabetic, Non-Diabetic, or Pre-Diabetic. The current work applies Logistic
Regression, SVM, Decision Tree, Random Forest, and Gradient Boosting
models to address the classification challenge. After training and testing the
models, Random Forest has been identified to deliver the highest accuracy at
98%, outperforming the others. These findings highlight the power of machine
learning in effectively classifying patients based on diabetes status.

1 Introduction
The identification of diabetes is critically important for comprehensive healthcare management and
individual well-being. Early detection allows patients to implement proactive lifestyle modifications
and medical interventions that can significantly slow disease progression, potentially preventing or
delaying severe complications like cardiovascular disease, kidney damage, and nerve disorders. Accurate
identification enables healthcare professionals to develop personalized treatment strategies, prescribing
appropriate medications, designing tailored diet and exercise plans, and monitoring specific risk factors
unique to each diabetes type. Undiagnosed or poorly managed diabetes can lead to life-threatening
health consequences, including kidney failure, vision problems, increased stroke risk, and impaired
wound healing. Moreover, timely diabetes identification has broader implications for healthcare systems,
reducing long-term medical costs, decreasing hospitalizations, and improving overall public health
management. Beyond medical metrics, proper diabetes identification empowers patients with a deeper
understanding of their health condition, enhancing their self-management capabilities, psychological
preparedness, and potential for maintaining a high quality of life. By recognizing diabetes early and
accurately, individuals can transform what could be a debilitating chronic condition into a manageable
aspect of personal health, ensuring better long-term outcomes and preventing potentially severe medical
complications. In 2023, a study conducted by the Indian Council of Medical Research (ICMR) and
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reported in Anjana et al. (2023) mentioned that over 10.1 crore individuals in India are affected by
diabetes. The increasing prevalence of diabetes has highlighted the urgent need for early detection
and effective management strategies. Machine learning models have been identified as promising to
enhance early diagnosis through accurate, non-invasive predictions, making them a crucial tool in modern
healthcare.

The research gap addressed by the proposed study lies in the transition from traditional binary
classification models to a multiclass classification approach for diabetes prediction. Typically, binary
models classify patients as either diabetic or non-diabetic. However, an additional category, "Predict-
Diabetic," has been introduced in the proposed multiclass model. This category aids in identifying
individuals at high risk of developing diabetes before its full manifestation. By incorporating this
advanced classification framework, a more refined understanding of diabetes risk is provided, enabling
timely interventions and personalized care.

A unique combination of features has been employed in the dataset, distinguishing this study from
prior research. While common health indicators such as Body Mass Index (BMI), age, and blood sugar
levels are included, more comprehensive metrics such as creatinine ratio (Cr), cholesterol levels (total,
LDL, VLDL, triglycerides, HDL), and fasting lipid profile have also been considered. This extensive set
of features enhances the model’s capability to capture a broader range of health patterns, leading to
more accurate and reliable predictions.

Few machine learning algorithms like Logistic Regression, SVM, Decision Tree, Random Forest and
Gradiant Boosting—have been applied for the implementation of the model. Each model has been
rigorously evaluated based on key performance metrics, including accuracy and recall rates. The models
demonstrated significant performance, with average accuracy ranging from 89% to 97%. The highest
accuracy, 98%, was achieved by the Random Forest model, which also showed exceptionally high recall
rates, indicating its effectiveness in correctly identifying diabetic cases. These results underscore the
robustness of the model and its potential for real-world application.

While the results achieved with machine learning models in this study are impressive, it is
worth noting that similar levels of accuracy have been achieved in other studies using more complex
deep learning models. However, by employing traditional machine learning algorithms, comparable
performance has been obtained, along with additional advantages of computational efficiency and
interpretability. This makes the models particularly suitable for deployment in practical healthcare
environments.

Furthermore, expanding the model to include genetic and lifestyle factors could provide a more
comprehensive risk assessment. By integrating diverse data sources, including genetic predispositions
and behavioral patterns, even more precise prediction models could be developed. Collaborative efforts
between healthcare providers and researchers could lead to the creation of robust, multi-faceted models
tailored to individual patient needs.

The current research addresses a critical gap in diabetes prediction while demonstrating the efficacy
of machine learning models in achieving high accuracy and recall rates. With continued advancements
and future enhancements, the model has the potential to significantly impact early diabetes detection
and management, ultimately contributing to improved patient outcomes and more efficient healthcare
delivery.

2 Literature Review
Diabetes is a prevalent and chronic condition that poses significant health risks globally. Early prediction
and classification of diabetes are crucial for timely medical intervention. Machine learning algorithms have
been widely adopted in recent years for the classification and prediction of diabetes. This section provides
a survey of relevant studies that have employed machine learning methods for diabetes prediction,
highlighting various models, techniques, and their respective performance.
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2.1 Machine Learning Approaches for Diabetes Prediction
Mujumdar and Vaidehi (2019) introduced the application of machine learning algorithms for diabetes
prediction, specifically exploring the effectiveness of classification models in predicting diabetes outcomes.
Their study demonstrated the potential of algorithms like Decision Trees, Support Vector Machines
(SVM), and Random Forests in predicting diabetes based on various medical parameters. Butt
et al. (2021) further explored the use of machine learning models in healthcare, focusing on diabetes
classification and prediction. They combined multiple classifiers, such as Random Forest and Logistic
Regression, to improve the accuracy of diabetes prediction models. Their findings highlighted the
importance of using multiple classifiers for robust healthcare applications. Qiao et al. (2020) focused on a
specialized aspect of diabetes prediction by using deep learning algorithms to detect diabetic retinopathy,
a complication of diabetes. Their model, which uses deep learning techniques on fundus images, not only
detects diabetes but also predicts the risk of developing complications like retinopathy, providing an
additional layer of predictive capability. Liang et al. (2021) proposed a radiomics-based approach for
predicting diabetic foot conditions using fundus images. This study is particularly relevant as it extends
diabetes prediction to complications associated with the disease, offering insights into the potential of
image-based diagnostics in diabetes prediction.

2.2 Ensemble Techniques and Hybrid Models
Several studies have employed ensemble methods to enhance the performance of machine learning models
for diabetes prediction. Hasan et al. (2020) utilized an ensemble approach by combining multiple
classifiers to improve prediction accuracy. Their findings demonstrated that ensemble models significantly
outperform individual models, providing more accurate predictions and better generalization. In a
similar vein, Islam Ayon and Milon Islam (2019) used deep learning methods for diabetes prediction,
demonstrating the advantages of leveraging complex neural networks for improving prediction accuracy.
This approach, while computationally more intensive, offers high accuracy and robustness in predicting
diabetes outcomes. Khanam and Foo (2021) compared several machine learning algorithms for diabetes
prediction, including Decision Trees, SVM, and K-Nearest Neighbors (KNN). They concluded that while
Decision Trees and SVM showed promising results, Random Forests outperformed them, providing a
more robust and accurate classification model.

2.3 Early Prediction and Risk Assessment
Early prediction and risk assessment of diabetes are crucial for prevention and management.
Mahboob Alam et al. (2019) focused on developing models for the early prediction of diabetes. Their work
integrated machine learning models with clinical data to predict diabetes onset in its early stages, thus
aiding in preventative healthcare measures. Jayanthi et al. (2017) surveyed clinical prediction models
for diabetes, discussing various machine learning models that have been employed to predict diabetes
based on clinical parameters. They noted that while many models show promise, there is a need for
further refinement in model interpretability and clinical applicability. Bukhari et al. (2021) proposed
an improved Artificial Neural Network (ANN) model for diabetes prediction. They demonstrated that
a well-designed neural network model could offer improved prediction accuracy by capturing complex
patterns in diabetes-related data, a key advantage for clinical decision support.

2.4 Comparison of Classifiers and Model Selection
Nai-arun and Moungmai (2015) compared classifiers like SVM, Naive Bayes, and K-Nearest Neighbors
for predicting diabetes, finding SVM to be the most suitable for accurate classification. Xue et al. (2020)
proposed a hybrid machine learning approach that combined SVM with artificial neural networks for
diabetes prediction. Their study showed that hybrid models could leverage the strengths of multiple
algorithms to improve predictive accuracy and robustness, particularly in complex and high-dimensional
datasets. Ahmed et al. (2022) introduced a fused machine learning approach for diabetes prediction,
where they combined different machine learning techniques to create a more powerful model. Their
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approach enhanced prediction accuracy, showcasing the advantages of hybridization in machine learning
models for healthcare applications.

2.5 Importance of Data Features in Diabetes Prediction
The selection of relevant features is essential for building effective prediction models. Studies by
Carstensen et al. (2020) and Sinha and Lipton (2021) have demonstrated that age and glucose levels are
key indicators for predicting diabetes onset. Fox and Flegal (2023) further emphasized the importance
of BMI as a predictor for type 2 diabetes, with high BMI being a well-established risk factor. Koye et al.
(2023) highlighted the role of creatinine levels in assessing kidney function in diabetic patients. Elevated
creatinine levels are commonly associated with diabetic kidney disease, making them an important feature
for prediction models targeting diabetic complications. Similarly, elevated urea levels, as discussed by
Macisaac et al. (2022), are another important indicator of renal dysfunction in diabetes, which can aid
in both early detection and risk assessment.

The literature demonstrates a growing volume of work on using machine learning algorithms
for diabetes prediction. Various approaches, from traditional machine learning algorithms like
Random Forests and SVM to deep learning techniques, have been explored with promising results.
Ensemble methods and hybrid models have shown great potential in improving prediction accuracy and
generalization. Furthermore, the inclusion of key physiological features such as age, glucose levels, BMI,
and creatinine ratio enhances the predictive capability of these models.

As the field continues to evolve, future research may focus on integrating more diverse data sources,
such as genetic information and lifestyle factors, to develop more personalized and accurate prediction
models. Moreover, there is significant potential for creating models that not only predict diabetes
onset but also provide early detection of complications, improving patient outcomes through timely
intervention.

3 Research Methodology
The current section discusses the problem formulation and the solution requirements to offer a generic
guideline for machine learning model design principles for multiclass classification of diabetes data. On
the basis of these guidelines or objectives, subsequent subsections report the justifications for selecting
diabetes related parameters and machine learning models for diabetes data classification.. However, for
the completeness of the paper, the current section mentions preliminary- level background studies on the
different machine learning models used and diabetes data parameters.

3.1 Problem Formulation
The objective of this study is to develop a multiclass classification model that can accurately predict
the diabetes status of patients. The target variable is the diabetes class, which categorizes patients as
Diabetic, Non-Diabetic, or Predict-Diabetic. The prediction or classification is based on several health
indicators, including standard factors such as sugar levels, BMI, cholesterol levels, and age, as well as
external factors like the creatinine ratio and fasting lipid profile. All the variables including target classes
and data parameters have been expressed with some specified notations as described in Table 1. These
notations have been extensively used in next discussion which officially states the problem.

3.1.1 Problem Statement
Given m number of labeled instances having, personal, physiological and target class related information,
to train the the chosen model(s) and an unseen test set of n instances of raw physiological information
(augmented with personal information); design a multi-class classifier to detect Existence or Non-
existence or Pre-Existence of diabetes.
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Table 1: Notations used in the study.

Item Notation Remark
Patient_id pat_id Personal Information

Age ag Personal Information
Gender gndr Personal Information,

values can be M/F/T
Sugar Level sl Physiological Information

Creatinine Ratio cr Physiological Information
Body Mass Index bmi Physiological Information

Urea ur Physiological Information
Cholesterol ch Physiological Information

Fasting Lipid Profile flp Physiological Information
Glycated Haemoglobin Test Vslue hba1c Physiological Information

Target Diabetic class C0 Represents Diabetic Class
Target Predict Diabetic class C1 Represents

Predict-Diabetic Class
Target Non Diabetic class C2 Represents

Target Non Diabetic Class

3.2 Justification of chosen physiological features
The early prediction of diabetes relies on multiple physiological parameters that indicate the risk and
severity of the disease. The following are the critical parameters chosen for this purpose, each justified
by evidence from existing research:

• Age: Age is a significant factor in diabetes risk, with the incidence of type 2 diabetes increasing
with age. This relationship is attributed to metabolic changes and increased insulin resistance as
individuals grow older Carstensen et al. (2020).

• Gender: Gender differences are known to affect diabetes risk, with women and men experiencing
distinct risk profiles. Hormonal differences and lifestyle factors contribute to these variances,
making gender a necessary consideration in predictive models Kautzky-Willer et al. (2022).

• Sugar Level: Blood glucose levels are directly indicative of diabetes, as hyperglycemia is a defining
characteristic of the disease. Monitoring sugar levels provides immediate insight into the body’s
ability to regulate glucose Sinha and Lipton (2021).

• Creatinine Ratio: The creatinine ratio is associated with kidney function, which is often impaired
in diabetes due to hyperglycemia. Diabetes-induced kidney damage results in elevated creatinine
levels, making this ratio a crucial indicator Koye et al. (2023).

• Body Mass Index (BMI): High BMI is linked to increased risk for type 2 diabetes, as excess
body weight contributes to insulin resistance. Studies demonstrate that obesity and elevated BMI
are consistent risk factors Fox and Flegal (2023).

• Urea: Elevated urea levels are indicative of renal dysfunction, a common complication of diabetes.
Monitoring urea can help detect early signs of kidney involvement in diabetic patients Macisaac
et al. (2022).

• Cholesterol: Dyslipidemia, characterized by abnormal cholesterol levels, is prevalent in diabetic
patients. High cholesterol levels are associated with cardiovascular complications in diabetes,
making this parameter essential for comprehensive risk assessment Gerstein and Ong (2024).

• Fasting Lipid Profile: The fasting lipid profile provides a detailed view of lipid abnormalities,
including triglycerides and HDL/LDL cholesterol levels, which are often altered in diabetic patients.
This profile is critical for understanding lipid metabolism disturbances related to diabetes Fruchart
et al. (2021).
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• Glycated Hemoglobin (HbA1c) Test: The HbA1c test measures average blood glucose levels
over the past 2-3 months, providing a long-term view of glucose control. It is a standard diagnostic
tool for diabetes and a reliable predictor of disease onset Wilson and Porter (2022).

3.3 Choice of Learning Models
Diabetes prediction is a critical task in healthcare, aiming to identify individuals at risk of developing
diabetes mellitus, particularly type 2 diabetes. Accurate prediction models enable early intervention,
reducing the prevalence of complications associated with the disease. This paper justifies the selection
of specific machine learning models like Logistic Regression, Support Vector Machines (SVM), Decision
Trees, Random Forest, and Gradient Boosting—for diabetes prediction. Additionally, it discusses the
theoretical limitations of other popular learning models in this context. The reasons behind the selection
of learning models are given below.

(i) Logistic Regression: Logistic Regression is a fundamental classification algorithm widely used for
binary outcomes, making it suitable for predicting the presence or absence of diabetes. The
model provides clear insights into the relationship between input features and the probability of
diabetes, which is valuable in clinical settings Smith and Johnson (2021). It requires relatively low
computational resources, allowing for quick training and prediction Brown et al. (2020). This model
often serves as a baseline model against which more complex models are compared Davis and Lee
(2019).

(ii) Support Vector Machines (SVM): SVMs are powerful classifiers known for their effectiveness in high-
dimensional spaces. SVMs aim to maximize the margin between classes, enhancing generalization
performance. This robust Huang and Li (2021) model has an ability to handle non-linear
relationships by applying different kernel functions, making them versatile for complex diabetes
data Vapnik (2013).

(iii) Decision Trees: Decision Trees offer a non-parametric approach to classification, suitable for
diabetes prediction due to its clear and understandable model structure, facilitating decision-making
in clinical practice Quinlan (2014). It is capable of managing both numerical and categorical features
without the need for extensive preprocessing Hastie et al. (2009). Moreover, Decision Trees have
the ability to model complex interactions between features Breiman (2001).

(iv) Random Forest: Random Forests, an ensemble of Decision Trees, enhance prediction accuracy
and robustness by averaging multiple trees, thereby mitigating the risk of overfitting common in
single Decision Trees Efron (2001). They provide measures of feature importance, aiding in the
identification of significant predictors for diabetes Liaw and Wiener (2002). Randon Forest is
capable of handling large datasets with higher dimensionality and complex feature interactions
Breiman (2001).

(v) Gradient Boosting: Gradient Boosting machines, including algorithms like XGBoost and
LightGBM, are highly effective for predictive tasks. They consistently achieve superior accuracy
by sequentially correcting the errors of previous models Chen and Guestrin (2016). Additionally,
it has the ability to optimize different loss functions and incorporate regularization techniques to
prevent overfitting He and Zhang (2023). Gradient Boosting models are known for their effective
in managing missing values within the dataset Shi and Zhang (2021), which is pretty common in
healthcare sector.

Limitations of Other Popular Learning Models: While numerous machine learning models exist, some
are less suited for diabetes prediction due to specific limitations:

(i) Neural Networks: Neural Networks typically require large datasets to perform well, which may not
always be available in medical contexts LeCun et al. (2015). Often considered "black boxes," Neural
Network makes it difficult to interpret the relationship between features and predictions which is a
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crucial aspect in healthcare Ribeiro et al. (2016). Training deep neural networks demands significant
computational power and time, which limits it scalability, a mandatory condition for wide adoption
in healthcare. Goodfellow et al. (2016).

(ii) K-Nearest Neighbors (KNN): KNN struggles with moderate to large datasets due to high
computational and memory requirements Cover and Hart (1967). It also requires careful
normalization of features, which can be cumbersome with mixed data types Cover and Hart (1967).
Performance of KNN can degrade abruptly with noisy or irrelevant features Guyon and Gunn
(2003), which is pretty common assumption in mass scale adoption of learning models in healthcare
domain.

(iii) Naive Bayes: The strong assumption that features are independent often does not hold in medical
data, leading to suboptimal performance Rennie (1997) in case of Naive Bayes. Moreover, it is
considered as less capable of capturing complex relationships between features compared to other
models like Random Forest or Gradient Boosting Rao and Narasimhan (2003).

Logistic Regression, SVM, Decision Trees, Random Forest, and Gradient Boosting are well-suited for
diabetes prediction due to their balance of interpretability, predictive performance, and ability to handle
complex data structures. While other models like Neural Networks, K-Nearest Neighbors, and Naive
Bayes offer their own advantages, they present significant challenges in the context of diabetes prediction,
such as interpretability issues, scalability problems, and restrictive assumptions. Therefore, the selected
models provide an optimal combination of performance and practicality for effectively predicting diabetes.

For, the completeness of this study, following subsesctions provide fundamental accounts of the
mathematical concept and formulation of the chosen learning model.

3.4 Logistic Regression
Model Overview
In Logistic Regression, we model the probability P (Y = 1|X) that the dependent variable Y (for example,
presence or absence of diabetes) equals 1, given the independent variable(s) X = (X1, X2, . . . , Xn).
Logistic Regression uses the logistic (sigmoid) function to transform the output of a linear equation into
a probability between 0 and 1.

Linear Combination of Inputs
First, we create a linear combination of the input features as described in Equation 1

z = β0 + β1X1 + β2X2 + · · · + βnXn = βT X (1)

where:

• β0 is the intercept term (bias),

• β1, β2, . . . , βn are the coefficients for each feature X1, X2, . . . , Xn,

• β = [β0, β1, . . . , βn] and X = [1, X1, X2, . . . , Xn] are the coefficient and feature vectors, respectively.

Sigmoid (Logistic) Function
To ensure that the output is a probability (i.e., between 0 and 1), we apply the sigmoid function to z as
expressed in Equation 2

P (Y = 1|X) = σ(z) = 1
1 + e−z

(2)

where σ(z) denotes the sigmoid function.
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Log-Odds Interpretation
In Logistic Regression, the log-odds or logit function is linear in the parameters as shown in Equation 3:

logit(P (Y = 1|X)) = ln
(

P (Y = 1|X)
1 − P (Y = 1|X)

)
= βT X (3)

This equation states that the logarithm of the odds of the positive class is a linear function of the input
features.

Cost Function (Log-Loss)
To estimate the parameters β, we use Maximum Likelihood Estimation (MLE), which aims to maximize
the probability of observing the true labels in the training data. In practice, this is equivalent to
minimizing the logistic loss or binary cross-entropy loss function as mentioned in Equation 4:

J(β) = − 1
m

m∑
i=1

[
y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))

]
(4)

where:

• y(i) is the actual label (0 or 1) of the i-th sample,

• ŷ(i) is the predicted probability for the positive class, given by σ(βT X(i)),

• m is the total number of training samples.

Gradient Descent for Optimization
The logistic loss function J(β) is minimized using gradient descent or one of its variants, like stochastic
gradient descent (SGD). The gradient of J(β) with respect to the parameters β is shown in following
equation Equation 5 :

∂J

∂βj
= 1

m

m∑
i=1

(
ŷ(i) − y(i)

)
X

(i)
j (5)

where X
(i)
j is the j-th feature value of the i-th sample.

This gradient is used to update the parameters in the direction that reduces the cost as per Equation
6 :

βj := βj − α
∂J

∂βj
(6)

where α is the learning rate.

Decision Boundary
For a binary classification problem, the decision boundary is the threshold at which we decide the output
class. In Logistic Regression, we typically use a threshold of 0.5. Thus the condition is expressed as in
Equation 7:

if P (Y = 1|X) ≥ 0.5, predict Y = 1; otherwise, predict Y = 0. (7)

3.5 SVM
Model Overview
The Support Vector Machine (SVM) is a supervised machine learning model primarily used for
classification tasks. It is designed to find the optimal hyperplane that maximizes the margin between two
classes. In this context, the margin is defined as the distance between the hyperplane and the nearest
data points from each class, which are known as support vectors.
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Linear SVM Formulation
For a binary classification problem, let X = {x1, x2, . . . , xn} represent the set of input feature vectors,
and y = {y1, y2, . . . , yn} denote the corresponding labels, where yi ∈ {−1, +1} for each i = 1, . . . , n. The
goal is to find a hyperplane that can be defined by Equation 8 as shown below :

wT x + b = 0 (8)

where:

• w is the weight vector perpendicular to the hyperplane, and

• b is the bias term.

For a correctly classified point, the following constraints must hold the following Equation 9:

yi(wT xi + b) ≥ 1, ∀i = 1, . . . , n (9)

This constraint ensures that data points from each class are separated by a margin of at least 1.

Optimization Problem
To maximize the margin, the objective is to minimize 1

2∥w∥2, subject to the constraints in Equation (2).
The optimization problem is then formulated as Equation 10:

min
w,b

1
2∥w∥2 (10)

subject to yi(wT xi + b) ≥ 1, ∀i = 1, . . . , n (11)

This is a convex optimization problem that can be solved using the method of Lagrange multipliers.

Lagrangian Dual Formulation
To solve the constrained optimization, the Lagrangian is constructed governed by Equation 12 :

L(w, b, α) = 1
2∥w∥2 −

n∑
i=1

αi

(
yi(wT xi + b) − 1

)
(12)

where αi ≥ 0 are the Lagrange multipliers.
The dual formulation, obtained by differentiating L with respect to w and b and setting the derivatives

to zero, is given by:

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (13)

subject to
n∑

i=1
αiyi = 0 (14)

αi ≥ 0, ∀i = 1, . . . , n (15)

The weight vector w can then be expressed as a linear combination of the support vectors:

w =
n∑

i=1
αiyixi (16)
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Kernel Trick for Non-Linear SVM
For non-linearly separable data, the kernel trick is employed to project the data into a higher-dimensional
space where a linear separation is possible. A kernel function K(xi, xj) = ϕ(xi)T ϕ(xj) is used, where
ϕ(·) is a mapping to a higher-dimensional space. Common kernel functions include:

• Linear kernel: K(xi, xj) = xT
i xj

• Polynomial kernel: K(xi, xj) = (xT
i xj + 1)d

• Gaussian (RBF) kernel: K(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
The dual formulation is modified to use the kernel function as shown in Equation 17 :

max
α

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj) (17)

subject to
n∑

i=1
αiyi = 0 (18)

αi ≥ 0, ∀i = 1, . . . , n (19)

Soft Margin for Non-Separable Cases
In cases where data are not linearly separable even after kernel transformation, a soft margin SVM
is applied by introducing slack variables ξi ≥ 0 that allow some misclassifications. The optimization
problem thus becomes as described inEquation 20 :

min
w,b,ξ

1
2∥w∥2 + C

n∑
i=1

ξi (20)

subject to yi(wT xi + b) ≥ 1 − ξi, ∀i = 1, . . . , n (21)
ξi ≥ 0, ∀i = 1, . . . , n (22)

where C is a regularization parameter that controls the trade-off between maximizing the margin and
minimizing classification errors.

Decision Function
Once w and b have been determined, the decision function for a new input x is given by Equation 23 as
shown below

f(x) = wT x + b (23)
For kernelized SVMs, this becomes:

f(x) =
n∑

i=1
αiyiK(xi, x) + b (24)

The classification decision is made as following Equation 25 :

if f(x) ≥ 0, predict Y = +1; otherwise, predict Y = −1. (25)

3.6 Decision Tree
*Introduction A Decision Tree is a supervised learning algorithm used for both classification and
regression tasks. In this model, data is continuously split according to a certain parameter until a
specific criterion is met. The structure resembles a tree, where each internal node represents a feature-
based decision, each branch represents an outcome of the decision, and each leaf node represents the final
prediction or classification.
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Model Structure and Split Criterion
A Decision Tree recursively partitions the data into subsets to maximize the homogeneity of target labels
in each subset. The choice of split at each internal node is made based on a criterion that measures the
quality of the split. Among the most commonly used criteria are Gini Impurity, Entropy, and Variance
Reduction.

Gini Impurity (Classification)
For classification tasks, Gini Impurity is often used to evaluate the quality of a split. Gini Impurity
measures the probability of misclassifying a randomly chosen element from the subset if it were labeled
according to the distribution of labels in that subset.

Given a node t containing samples belonging to K classes, the Gini Impurity, G(t), is defined as in
Equation 26 :

G(t) = 1 −
K∑

k=1
p2

k (26)

where pk represents the proportion of samples in node t that belong to class k.
When a split is made, the Gini Impurity is calculated for each resulting subset, and the weighted

average impurity is computed. The reduction in impurity, known as the Gini Gain, is then used to
determine the optimal split.

Entropy and Information Gain (Classification)
Another criterion commonly used for classification is Entropy, which measures the impurity or disorder
within a set of data. Entropy, H(t), for a node t is defined as following Equation 27 :

H(t) = −
K∑

k=1
pk log2 pk (27)

where pk is the proportion of samples in node t belonging to class k.
To determine the effectiveness of a split, Information Gain is computed. Information Gain is defined

as the reduction in entropy after the dataset is split according to a particular attribute. For a node t
that is split into two child nodes tL and tR, the Information Gain IG is calculated as in Equation 28 :

IG = H(t) −
(

NL

N
H(tL) + NR

N
H(tR)

)
(28)

where N is the number of samples in node t, and NL and NR are the number of samples in the left and
right child nodes, respectively.

Variance Reduction (Regression)
For regression tasks, the split criterion aims to minimize the variance in each subset, as opposed to
maximizing homogeneity of classes. The variance of a node t containing N samples with target values yi

is calculated as per following Equation 29 :

Var(t) = 1
N

N∑
i=1

(yi − ȳ)2 (29)

where ȳ represents the mean of target values in node t.
The variance reduction from a split into two nodes tL and tR is then calculated as shown in Equation

30 :
∆Var = Var(t) −

(
NL

N
Var(tL) + NR

N
Var(tR)

)
(30)

where N , NL, and NR are the numbers of samples in nodes t, tL, and tR, respectively.
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Tree Growth and Stopping Criteria
The Decision Tree is grown recursively by selecting the best split for each node based on the chosen
criterion (e.g., Gini Impurity, Entropy, or Variance). The growth of the tree continues until one of the
stopping criteria is met. Common stopping criteria include:

• A maximum depth limit is reached.

• A minimum number of samples per leaf node is reached.

• The decrease in impurity or variance falls below a specified threshold.

Pruning
Pruning is a technique used to reduce the size of the tree and improve generalization by preventing
overfitting. Post-pruning is a commonly used approach, in which the fully grown tree is pruned
by removing branches that contribute little to the predictive power of the model. Cost-complexity
pruning (or weakest link pruning) involves defining a cost function that balances tree complexity and
misclassification error as shown in Equation 31:

Cα(T ) = R(T ) + α × |T | (31)

where R(T ) is the misclassification rate of the tree T , |T | is the number of terminal nodes in the tree,
and α is a tuning parameter that controls the trade-off between model complexity and accuracy.

3.7 Random Forest
Overview of the Random Forest Model
Random Forest is an ensemble learning method primarily used for classification and regression tasks.
This model consists of multiple decision trees, which together form a "forest." The predictions of the
individual trees are aggregated to form the final prediction. Random Forest addresses the limitations of
single decision trees, such as high variance, by averaging multiple decision trees created from bootstrapped
samples of the dataset.

Construction of Decision Trees
Let {(X(i), Y (i))}N

i=1 denote a dataset with N samples, where each X(i) = (X(i)
1 , X

(i)
2 , . . . , X

(i)
n ) represents

a feature vector and Y (i) denotes the corresponding label.
Each tree in the forest is trained on a bootstrapped sample of the original dataset. Given the

bootstrapped sample Dt, the tree is grown by recursively partitioning the data at each node. At each
node, a random subset of m features from the total n features is selected, and the optimal split among
these m features is determined according to a chosen criterion, such as Gini impurity or entropy for
classification.

Gini Impurity and Entropy for Splitting
To evaluate the quality of a split at each node, Gini impurity and entropy are commonly used metrics.
For a node containing samples from K classes, let pk denote the probability of a sample belonging to
class k at this node. These metrics are defined as follows:
Gini Impurity The Gini impurity IG at a node is calculated as shown in following Equation 32 :

IG = 1 −
K∑

k=1
p2

k (32)
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Entropy The entropy H at a node is given by Equation 33:

H = −
K∑

k=1
pk log2(pk) (33)

For each possible split, these metrics are calculated to identify the one that results in the greatest
reduction in impurity or entropy.

Aggregation of Predictions
The final prediction in a Random Forest model is obtained by aggregating the predictions of all individual
trees in the forest.
Classification In classification tasks, the final predicted class as shoen in Equation 34 Ŷ is determined
by a majority vote among the predictions Ŷ1, Ŷ2, . . . , ŶT from the T trees:

Ŷ = mode(Ŷ1, Ŷ2, . . . , ŶT ) (34)

Regression: For regression tasks, the final prediction as shoen in Equation 35 Ŷ is obtained by
averaging the individual predictions from each tree:

Ŷ = 1
T

T∑
t=1

Ŷt (35)

Out-of-Bag Error
In Random Forest, out-of-bag (OOB) error estimation is used as an internal mechanism to assess model
accuracy without the need for a separate validation set. Given a sample that is not included in the
bootstrapped sample for a particular tree t, this sample can serve as a test instance for that tree. The
OOB error is calculated by averaging the prediction errors over all trees for which the sample was not
included in the training set.

Feature Importance
Feature importance scores provide insight into the contribution of each feature in making predictions.
In Random Forest, the importance of feature Xj can be computed by measuring the average reduction
in Gini impurity (or entropy) across all nodes that split on Xj across all trees. The feature importance
score for Xj , denoted I(Xj), is given by Equation 36:

I(Xj) = 1
T

T∑
t=1

∑
n∈Nt

∆In,j (36)

where:

• T is the total number of trees,

• Nt is the set of nodes in tree t,

• ∆In,j represents the reduction in impurity at node n by splitting on feature Xj .

3.8 Gradient Boosting
Model Overview
Gradient Boosting is an ensemble learning method for regression and classification tasks. This model
builds a sequence of weak learners, typically decision trees, in a stage-wise manner, such that each
subsequent model attempts to correct the errors made by its predecessor. The primary goal is to minimize
a predefined loss function by iteratively adding models that reduce residual errors.
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Functional Gradient Descent
The Gradient Boosting method can be understood as an application of functional gradient descent,
where a sequence of models is constructed to approximate a function F (x) that minimizes a given loss
L(y, F (x)). The objective is expressed as Equation 37 that follows as:

F ∗(x) = arg min
F

Ex,y

[
L(y, F (x))

]
(37)

where y represents the actual target variable, x denotes the input features, and F (x) is the model’s
prediction.

An initial model F0(x) is chosen to approximate F (x). Then, subsequent models are added to
minimize the residual errors iteratively.

Additive Model Formulation
Gradient Boosting employs an additive model, defined as Equation 38 :

Fm(x) = Fm−1(x) + γmhm(x) (38)

where:

• Fm−1(x) represents the prediction from the previous stage,

• hm(x) is the new model (or weak learner) added at stage m,

• γm is the step size or learning rate.

The new model hm(x) is selected to minimize the residual error between the true value and the
prediction from the previous stage.

Loss Function and Residuals
The loss function L(y, F (x)) guides the selection of the next model. For each observation i at stage m,
the residual rim as defined in Equation 39, is defined as the negative gradient of the loss function with
respect to the prediction:

rim = − ∂L(yi, F (xi))
∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

(39)

This residual rim can be interpreted as the direction and magnitude by which the current prediction
Fm−1(x) deviates from minimizing the loss function for each observation.

Fitting the Weak Learner
At each stage m, a new model hm(x) is trained to predict the residuals rim computed for each observation.
This model is fitted to approximate the residuals in order to improve the overall prediction.

Update Rule
The weak learner hm(x) is scaled by a factor γm, known as the step size or learning rate, to control the
contribution of each stage to the final model. The update rule for the model at stage m can then be
expressed as Equation 40 :

Fm(x) = Fm−1(x) + γmhm(x) (40)

Typically, γm is a fixed learning rate that is determined through tuning and remains constant across
iterations.
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Table 2: Summary of the dataset features

Feature Datatype Mean Standard
Deviation

Age Int64 53.60 8.732
Urea Float64 5.123 2.940

Creatinine Ratio Int64 68.937 60.131
HbA1C Float64 8.284 2.534

Cholesterol Float64 4.865 1.303
Triglycerides Float64 2.352 1.403

HDL Float64 1.205 0.661
LDL Float64 2.609 1.117

VLDL Float64 1.824 3.621
BMI Float64 29.561 4.952

Convergence and Regularization
The convergence of the Gradient Boosting model can be controlled by setting the maximum number
of stages M , the learning rate γm, and the complexity of each weak learner hm(x). Regularization
techniques, such as limiting the depth of decision trees, early stopping, and subsampling, are often
employed to prevent overfitting and improve generalization.

4 Experiment
4.1 Objective of the experiment
Based on the problem statement described in previous section, the objective of the experiment could be
identified as

• To implement the selected learning models on to a standard and benchmarked dataset containing
identified features.

• To record performance metrics of all the selected models to have a concrete conclusion on which
model should be chosen for computational diabetic decision making.

• To explain the experimental observations through theoretical knowledge.

4.2 Dataset Description
The dataset used in this study has been collected from https://data.mendeley.com/datasets/wj9rwkp9c2/1.
This dataset complies crucial medical and lab data of 1,000 patients of Medical City Hospital and
Al-Kindy Teaching Hospital in Iraq. consists of medical records of patients, which include the Medical
City Hospital and Al-Kindy Teaching Hospital in Iraq.

The dataset contains all the attributes mentioned in subsection 3.1. The mapping of the attributes
to the notations mentioned in subsection 3.1 are as follows.

Attribute No. of Patient, Sugar Level (Blood Glucose), Age Gender, Creatinine Ratio, Body Mass
Index, Urea, Cholesterol and HbA1C directly map to pat_id, sl, ag, gnd, cr, bmi, ur, ch and hba1c
respectively. The symbol flp designates a vector of LDL (Low-Density Lipoprotein), VLDL (Very Low-
Density Lipoprotein), Triglycerides (TG) and HDL (High-Density Lipoprotein) attributes of the dataset.

The distribution of key features in the dataset is summarized in Table 2.

4.3 Data Preparation
The dataset underwent several preprocessing steps to ensure its quality for training the machine learning
models:
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Label Encoding
The categorical columns in the dataset, specifically Gender and Class, were encoded into numerical
values using label encoding. Gender was coded as 0 for Male and 1 for Female, while the Class column
was encoded as 0 for Non-Diabetic, 1 for Predict-Diabetic, and 2 for Diabetic.

Outlier Detection and Removal
Outliers were detected using the Interquartile Range (IQR) method. This method calculates the spread
of the middle 50% of the data, and outliers are identified as values that fall outside 1.5 times the IQR.
These outliers were removed to improve model performance.

Feature Standardization
The numerical features were standardized to ensure all variables were on the same scale, with a mean of
0 and a standard deviation of 1. Standardization is crucial for models like Support Vector Machines and
Gradient Boosting, which are sensitive to the scale of input features.

Train-Test Split
The dataset was split into training (70%) and testing (30%) sets to evaluate the model’s generalization
performance. This split was chosen to ensure a sufficient amount of data for both model training and
evaluation.

4.4 Model Implementation
Hyperparameter Tuning
Each model underwent hyperparameter tuning to optimize its performance. The hyperparameter tuning
was done using GridSearchCV, which systematically searches for the best parameter values based on
model performance on a validation set.

Model Evaluation
The performance of the models was evaluated using several metrics, including classification accuracy,
precision, recall, F1-score, and the confusion matrix. These metrics provide a comprehensive view of the
models’ ability to correctly identify diabetic, non-diabetic, and predict-diabetic cases.

Classification Accuracy
Accuracy measures the ratio of correct predictions to the total number of predictions made.

Confusion Matrix
The confusion matrix provides detailed insights into the model’s performance, showing the number of
true positives, false positives, true negatives, and false negatives for each class.

Precision, Recall, and F1-Score
• Precision: The proportion of true positive predictions out of all predicted positive cases.

• Recall: The proportion of true positives out of all actual positives.

• F1-Score: The harmonic mean of precision and recall, balancing the two metrics.
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Table 3: Model performance comparison

Model Accuracy Precision Recall F1-Score
Logistic Regression 89.4% 0.75 0.69 0.72

SVM 94.1% 0.77 0.77 0.77
Decision Tree 95.8% 0.91 0.77 0.83

Random Forest 98.22% 1.00 0.92 0.96
Gradient Boosting 97.6% 1.00 0.85 0.92

Figure 1: Comparisons of performance among ML algorithms.

ROC Curve and AUC
The ROC curve plots the true positive rate against the false positive rate, while the AUC score measures
the model’s ability to discriminate between classes.

4.5 Experimental Results
Among the implemented models, Random Forest achieved the highest accuracy at 98.22%. The
performance of other models like SVM and Gradient Boosting was also strong, with accuracies exceeding
94%. A detailed comparison of the models based on accuracy, precision, recall, and F1-score is presented
in Table 3.

Fig 1 shows the graphical representation of comparative study of model performance on chosen
evaluation parameters. The graphical representation clearly shows the best performers on four different
parameters.

4.6 Result Analysis
The experimental results, summarized in Table 3, demonstrate that the Random Forest model achieved
the highest performance across all evaluated metrics, with an accuracy of 98.22%. Its precision, recall,
and F1-score metrics also surpassed those of other models, highlighting its robustness and suitability for
multiclass diabetes classification.

Among the other models, Gradient Boosting achieved the second-highest accuracy at 97.6%, with
an impressive F1-score of 0.92, indicating its ability to balance precision and recall effectively. This
performance validates the strength of ensemble methods in handling complex datasets.

The Decision Tree model performed moderately well, achieving an accuracy of 95.8%. While its
precision was high at 0.91, the recall value was comparatively lower, indicating that it was slightly less
effective in identifying all relevant cases compared to the Random Forest and Gradient Boosting models.
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The SVM model, with an accuracy of 94.1%, displayed consistent performance across precision,
recall, and F1-score, all at 0.77. This highlights its utility as a reliable classifier for balanced datasets
but indicates a limitation in handling more complex patterns compared to ensemble methods.

Logistic Regression, as expected, showed the lowest accuracy at 89.4%, primarily due to its linear
nature and inability to capture non-linear relationships inherent in the data. Its F1-score of 0.72 reflects
moderate performance, suitable as a baseline but insufficient for precise multiclass classification.

Overall, the superior performance of Random Forest underscores the advantage of ensemble
techniques in achieving high predictive accuracy and generalization. The model’s ability to
effectively handle feature importance and mitigate overfitting makes it the optimal choice for practical
implementations in diabetes prediction tasks.

The observed results align with the theoretical understanding of diabetes pathophysiology and the
characteristics of the chosen machine learning models. Random Forest, an ensemble method, excels
in capturing complex interactions between features such as blood glucose levels, BMI, cholesterol, and
HbA1c, which are crucial physiological indicators for diabetes classification. These indicators exhibit
non-linear relationships and interdependencies, such as the impact of obesity on insulin resistance or
the association between cholesterol and cardiovascular risks in diabetes. Random Forest’s capability
to aggregate decisions from multiple trees enhances its robustness and generalizability, particularly for
datasets with diverse feature distributions. Similarly, Gradient Boosting’s iterative refinement of residual
errors complements the subtle nuances of diabetes progression, such as the transition from pre-diabetic
to diabetic stages. On the other hand, models like Logistic Regression and SVM, which rely on linear
separability or fixed decision boundaries, struggle to capture the multifaceted an

5 Conclusion
This study explored the application of machine learning algorithms for the multiclass classification of
diabetes, distinguishing between diabetic, pre-diabetic, and non-diabetic individuals. By leveraging an
extensive set of features, including physiological and biochemical indicators such as blood glucose levels,
BMI, and lipid profiles, we developed models that achieved high accuracy. Among the models tested,
Random Forest emerged as the best-performing algorithm, achieving an accuracy of 98.22%, followed
closely by Gradient Boosting. These results emphasize the efficacy of ensemble learning techniques in
handling complex datasets and providing reliable predictions in healthcare scenarios.

The findings validate the importance of feature diversity and advanced model architectures in
capturing the multifaceted nature of diabetes progression. While simpler models like Logistic Regression
provide baseline results, their inability to model non-linear relationships limits their applicability in this
context. Conversely, ensemble methods demonstrate robustness and generalization, making them suitable
for real-world deployments in clinical decision-making.

Future research can build upon this work by integrating additional genetic and behavioral data to
further enhance prediction accuracy. Additionally, designing a novel activation function tailored to the
underlying science of diabetes could be a promising avenue. Such an approach could improve the learning
efficiency of neural networks, enabling them to better capture the intricate relationships between features
and the progression of diabetes. This direction not only aligns with advancements in machine learning
but also holds the potential to bridge the gap between computational techniques and medical science.
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