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The food demand is rising enormously due to the increasing population
worldwide. The farmers’ conventional practices need to be revised to meet
the dietary needs of the global masses. Moreover, the excess use of chemical
fertilizers, pesticides, herbicides, and water degrades the environment and
increases the production cost of cultivation. To satisfy the requirements of
a rapidly rising global population, farming requires modern scientific and
technological implementations like the Internet of Things (IoT), Artificial
Intelligence (AI), and Automation. Technology-based precision farming has
started to play an essential role in soil, insect, weed and irrigation management,
eventually boosting agricultural output. AI-powered automation in precision
farming can save water, pesticides, and herbicides, maintain soil fertility, and
boost the productivity and quality of agricultural products by drastically
lowering waste. Before AI-based automation can be extensively embraced by
all types of farmers worldwide, several issues need to be resolved, such as the
unequal distribution of mechanization, algorithms’ capacity to reliably handle
enormous volumes of data, and data security and privacy. In the study, we
reviewed several scientific papers on the potential applications of IoT, AI,
and some other emerging innovations for creating automated innovative farm
machinery, irrigation systems and drones for the protection of plants, nutrient,
pesticide and herbicide management and crop health monitoring.

1 Introduction
Since millennia, agriculture has played a crucial part in the world economy. Agriculture is estimated to
generate around 4% of the world’s global gross domestic product (GDP). Agriculture accounts for over
one-fourth of the GDP in most third-world nations, with more than two-thirds of rural households relying
on it for their livelihoods. Within 2050, the world’s population will be almost 10 billion, necessitating
an increased crop production by increasing yield per hectare (FAO, 2017). Green revolution significantly
increased agricultural production (Campos et al., 2018; Evenson and Gollin, 2003; Tilman et al., 2002) and
it was around 300 percent in the last sixty years; nevertheless, the widespread use of synthetic pesticides
continuously polluting nature and also harming human health (Pingali, 2012; Evenson and Gollin, 2003).
Still, most of the world’s developing nations will continue to work toward higher food production by
utilizing mineral fertilizers throughout the next 50 years (Swaminathan, 2007). In recent years, several
challenges have jeopardized the economic and environmental viability of current and future food supply
systems, including a lack of farmland, labour shortages, severe weather, a decline in soil fertility, and
others. There has been a significant shift in most sectors in the world since the introduction of modern
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technologies, for example, computer vision (Pramanik et al., 2021a), machine learning (Sarkar et al.,
2019b, 2020, 2019a), and deep learning (Sarkar et al., 2022). However, the agricultural sector still needs
to catch up. As a result, using new technologies in agriculture will spur rural growth, paving the way for
rural transformation and, ultimately, structural change (Mogili and Deepak, 2018). In our daily lives, AI
is beginning to play a significant role. It can potentially expand our senses and influence our immediate
surroundings (Gandhi et al., 2019; Kundalia et al., 2019). Automation of agriculture with artificial
intelligence already improves production, harvesting, and processing (Dawn et al., 2023). Internet of
Things (IoT) and AI have been considered crucial technologies for transforming contemporary agricultural
methods in light of recent advancements in ICT (Information and Communication Technology). Artificial
intelligence-assisted agriculture has gained widespread recognition as one of the possible answers to
the world’s food scarcity since it tackles problems that humans cannot adequately handle. The first
attempt to apply AI to agriculture was made in 1985 with the creation of COMAX, an Expert System-
based simulation model for cotton crops. Its objective was to maximize cotton yield while accounting
for the effects of fertilization, weed control, irrigation, climate, and other aspects (Lemmon, 1986).
Precision farming’s main objective is to make the most of the resources that are already available while
avoiding any adverse environmental consequences (Das, 2018). Real-time analysis made possible by
agriculture’s digitization aids in land monitoring, better spraying, and land and water management.
Cutting-edge digital technology and agricultural automation may help minimize input costs and waste,
apply sustainable practices, and increase productivity to meet the expanding food needs. In this study, we
examine recent developments in agricultural automation driven by artificial intelligence for sustainable
agriculture. We also discuss the present obstacles to the widespread adoption of these contemporary
technologies in the near future, particularly for common farming communities.

2 Methodology
This current research used a systematic literature review approach to explore the adoption of Artificial
Intelligence (AI), Machine Learning (ML) and the Internet of Things (IoT) in agriculture. The review
was, therefore, not an empirical review that aimed at identifying new research or new data but rather
a theoretical review that recruited works from already published databases. The articles were retrieved
using Scopus, Web of Science and Google Scholar using various keywords, including “AI in Agriculture",
“Machine Learning in Agriculture", and “IoT in agriculture and precision agriculture". Boolean operators
were used to expand specific search strings, implying that only those articles were considered, which
gave a richer understanding of these technologies in agriculture. The study focused on articles recently
published in English. Primary and secondary screening were included, with title and abstract sources
scrutinized, followed by full texts and quality as a final step after pre-screening. Information extraction
aimed to find overviews, current tendencies and developments, potential uses and issues in the sphere,
while synthesized knowledge described categories such as crop surveillance, yield estimation, and pest
management. The findings of this review were then synthesized to offer a systematic account of the forms
and uses of the approaches of AI, ML, and IoT in agriculture work, the issues encountered, and finally,
the areas they highlighted for further research.

3 Precision farming by drones
For precision farming to be sustainable, the availability and accuracy of field data is crucial. Due to
sampling size limitations and inherent subjectivity, traditional methods of collecting crop data often need
to catch up to capturing infield variations (Chang et al., 2017; Zhang et al., 2021). Accurate, flexible,
fast and cost-effective measurements of plant development may be made using drones (Unmanned Aerial
Vehicles) fitted with red, green, blue and multispectral sensors (Ampatzidis et al., 2017; Pajares, 2015;
Singh et al., 2015). To evaluate the phenotypic attributes of citrus trees, Ampatzidis et al. (2017)
successfully tested precision agricultural applications employing artificial intelligence and a cloud-based
application (Agroview). Agroview processes, analyses, and visualizes data received by drones. He
reported that this approach detected citrus trees with an accuracy of 2.3% in a commercial citrus
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Figure 1: Drone-based data collection workflow.

plantation with 1,75,977 plants. In recent times, tree recognition and counting (Salamí et al., 2019),
height and canopy estimate (Mu et al., 2018), and growth and yield prediction (Jiménez-Brenes et al.,
2017; Sarron et al., 2018) have all been developed using drone-based approaches. At its core, a drone is
a collection of actuators and motors that can perform the necessary tasks, as well as various sensors that
can gather information about the surrounding environment. The remote control and radio frequency
communication are used to communicate with this. Drones equipped with thermal and multispectral
sensors can survey large-scale terrain in a single flight (Hoummaidi et al., 2021).

Drones can also spray pesticides, which is an important consideration. The spraying system connects
the sprayer and pesticide tank via a hose that runs along the bottom of the drone. Using the controller,
the sprayer’s nozzle can be turned on and off. This approach saves labour and time and takes care
of health hazards from chemical pesticides. The agricultural sector is embracing drone technology to
revolutionize precision farming in the modern age. Most countries’ security concerns make establishing
clear regulations for drone use a major challenge. As a result, scientists have also considered utilizing
drone data to evaluate plant phenotypic traits at the field level (Gracia-Romero et al., 2019; Yeom et al.,
2019). The usage of drone has also been utilized to assess water stress (Santesteban et al., 2016), monitor
crop disease (Shakoor et al., 2017), map weeds (Gašparović et al., 2020), as well as estimate biomass
and yield (Niu et al., 2019; Olson et al., 2019; Duan et al., 2019). Yallappa et al. (2017) reported
satisfactory test results while spraying pesticide on groundnuts and paddy crops by using a drone fitted
with a spray motor. A sugarcane field was successfully divided into sparse and dense sections using a
drone by Murugan et al. (2017) for precision agricultural monitoring. A significant benefit of drones is
that they may be used to spray pesticides on crops like maize, which are otherwise difficult to reach in
cloudy weather. Ashapure et al. (2019) and Moeckel et al. (2018) have shown that high chronological
resolution data may be used to evaluate crop factors like canopy height, canopy cover and vegetation
indices, whereas Jung et al. (2018) picked out genotypes, and Zhou et al. (2017) even predicted crop
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yields.
The workflows instrumental to precision farming using drones and advanced technology are best

understood by reference to Figs. 1 and 2 above. The Drone-Based Data Collection Workflow is described
in Fig. 1 as showing how UAVs are used in data collection workflows then preprocessing the data so that
it is ready for analysis. In addition to this, Fig. 2 shows the Workflow of image and Data upload from
UAVs to the Agroview website – this depicts how the collected data from UAVs is efficiently transferred
for further processing and application in the view of making intelligent decisions in matters relating
to agriculture. The Precision Viticulture System is presented in further detail in Fig. 3, wherein IoT
devices, AI, and automation are employed for crop management monitoring, evaluation, and prediction.

4 Nitrogen fertilizer management by canopy reflectance
sensors for precision farming

Most of the smallholders in developing nations prioritize nitrogen (N) fertilizer application many times
more than the local guidelines to maximize yields, especially in irrigated cereal-based cropping systems,
which cannot account for the dynamic geographical heterogeneity in soils’ N-supplying capability.
Overdose of N fertilizer increases production costs and pollutes the environment. To apply the optimum
amount of N fertilizer, a Sensor-based Nitrogen Rate Calculator (SBNRC) took a significant role in
precision agriculture. This technique records the NDVI (Normalized Difference Vegetative Index) (refer
to Eq. (1)) using the GreenSeekerTM sensor. In this equation, RINR indicates reflectance in the near
infra-red band and RRED denotes reflectance in the red range of the red band. The principles of proximal
sensing deploy canopy reflectance sensors and must be either in direct touch with or within two meters of
the target and can direct the need-based target-specific nitrogen fertilization in various field crops (Mulla,
2012). Hunt et al. (2010) found that green NDVI and leaf area had a good correlation by analyzing
UAV multispectral images for crop monitoring. It calculates cereal crops’ fertilizer N requirements
using projected yields and attainable leaf greenness, which have a significant advantage over generally
recommended dose or need-based N management technologies like the SPAD meter and the leaf color
chart. Plant health and vigor are measured in NDVI measurements using the GreenSeekerTM portable
sensor, which is simple to use and can be hand-held or fitted in a drone. Red (650 ± 10 nm wavelength)
and near-infrared (770 ± 15 nm wavelength) light from the sensor is briefly pulsed, and then the amount
of light reflected from the plant is measured. Most of the red light is absorbed, and healthy green plants
reflect most infrared radiation. Reflectance readings from different wavelengths are used to calculate.

NDV I = RINR − RRED

RINR + RRED
(1)

NDVI ranges from -1 to 1, with 1 signifying the most excellent crop density and 0 signifying the
lack of vegetation. These studies measure crop health and identify insect infestations. An algorithm is
needed to transform canopy reflectance sensor measurements into the quantity of fertilizer N needed to
alleviate crop N stress (Samborski et al., 2009). The creation of reference strips with enough N fertilizer
(Sripada et al., 2008) allowed for the development of N response functions, which are a crucial part of
the algorithm that converts sensor signals to the quantity of N fertilizer the crop needs to provide the
anticipated yield (Scharf et al., 2011).

5 Precision irrigation by using sensor-based AI
Farming uses more than 70% of the world’s freshwater, which will only increase with an increasing global
population and need for food. Irrigation is crucial for agricultural development, especially in dry and
semiarid regions, because without it, there is a high likelihood of crop failure or a significant decrease
in yield (Haghverdi et al., 2016). Because of this, we must design more efficient irrigation systems to
guarantee that water supplies are effectively used. Several methods are employed in modern irrigation
systems to optimize water use efficiency. AI-powered sensor-based automatic irrigation systems (Figure
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Figure 2: Workflow flow for uploading images and data from UAVs to the Agroview website.
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Figure 3: Precision Viticulture System Using IoT Devices.

4) can measure the soil’s moisture content in real time when installed near the crops’ root systems. Jain
et al. (2023) also present an IoT-based soil analysis system that employs optical sensors and multivariate
regression to enhance the accuracy and efficiency of soil property assessment. The sensors transmit this
signal to the microcontroller for need-based irrigation, which significantly cuts down water use (Qualls
et al., 2001). Based on the soil’s field capacity, moisture sensors can set a threshold, allowing the controller
to water only when necessary. According to Avatade and P (2015), the primary goal of constructing an
irrigation system is to minimize resource use and boost efficiency. Temperature and moisture sensors
may be employed at a time, which will optimize the frequency of watering and will reduce human error,
saving time and labour. This technology, known as Machine-to-Machine (M2M), is a new technology
designed to make it simpler for farmers to connect and exchange data with each other and with a server
or cloud (Pramanik et al., 2021b). The site, an autonomous robotic model has been made using Arduino
and Raspberry Pi3 to measure the temperature and moisture content. The data is detected periodically
and delivered to the Arduino microcontroller. Digital signals are generated from the analog input, and
the Raspberry Pi 3 receives a signal that activates the water supply for irrigation. Depending on the
need, the resource will provide water and sensor data will be updated and stored. In 2013, Galande and
Agrawal designed a fully automated low-cost drip irrigation intelligence system using the ARM7TDMI-S
microcontroller and the 89C51 microprocessor. The PIC 18f4520 microcontroller was utilized by Madli
et al. (2016) for his intelligent, automated precision irrigation system, which is responsible for keeping
an eye on soil moisture, air temperature and humidity in the field. In order to gather sensor data and
send it to a server mobile phone for processing, the microcontroller uses the PIC16f877A and the HC-05
Bluetooth module as part of its implementation. Arvind et al. (2017) also worked on a Machine Learning
Algorithm-based automatic irrigation system based on Arduino. This system was designed to combat
drought scenarios.

6 Weed detection by AI and automation in weed
management

Common issues with traditional manual, mechanized, and chemical weeding include high crop loss
throughout the weeding process. Autonomous precision weeding by robots or AI-guided UAVs (Figure
5) improves efficiency and reduces herbicide wastage. It has been noticed that by analyzing UAVs, AI-
captured images of rice fields in an entirely conventional network method can recognize 88% of weeds
accurately, and its weed mapping accuracy is almost 94% (Huang et al., 2018). It was observed that
a computer vision-aided weed control system was 93.6% accurate utilizing the haar cascade classifier
and the OpenCV open-source framework. The computer-aided system uses computer vision to direct
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Figure 4: Automated irrigation systems using IoT (Source: Subeesh & Mehta, 2021).

the wedding actuator to carry out weeding operations (mechanical) without damaging the plants in the
field (Chang and Lin, 2018; Verma et al., 2022). In their research, Zhang et al. (2021) showed that
a convolutional neural network can recognize complex weed flora during grass establishment when the
weeds are mature with accuracy and recall over 90%.

7 Weather-based plant disease forecasting system
A weather-based plant disease forecasting system (Fig. 6) uses UAV technology and data analysis for
precautionary stewardship in agriculture (Gao et al., 2020). The beginning of the system is to have a
UAV to capture images of the field. After that, the images go through a preprocessing stage where their
quality is improved, and they are prepared for analysis. Segmentation and feature extraction enable the
identification of crucial plant and environmental data narratives. Further classification techniques are
used to predict if the images show the risk of disease or healthy crops. Subsequent processes include
weed localization and mapping, or crop health assessment, which produces maps on the distribution of
weeds or reports on crop health. The gathered facts consequently contribute to the decision-making
about the specific eradication of weeds or diseases. They become crucial for farmers because they help
make timely decisions to minimize threats and maintain good crop conditions. This system optimizes
agricultural advancement through weather information, image processing and AI for disease identification
and intervention.

8 Fruit harvesting by AI-enabled automated robot
Another intriguing use of AI in agriculture is automatically detecting fruits and harvesting using a robotic
arm (Fig. 7). Several scientists have made many approaches (Bulanon et al., 2004; Rakun et al., 2011)
to develop automated fruit harvesting robots using spectral, color, or thermal cameras. These techniques
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Figure 5: UAV-Based Image Processing Workflow for Weed Detection and Crop Health Assessment.
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Figure 6: Weather-based plant disease forecasting system.

are challenging to employ under varying lighting circumstances because insufficient color information
may be collected. Fruit detection should utilize several characteristics, such as texture, color, reflection,
and shape, to improve accuracy and get around problems like clustering and fluctuating lighting. To
classify peach, Kurtulmus et al. (2013) developed an artificial neural network that worked with high
precision. Onishi et al. (2019) found more than 90% harvesting accuracy, and the robots’ harvesting
time per fruit is 16s. The fruit’s three-dimensional location is detected using a stereo camera and a quick
and accurate Single Shot MultiBox Detector technique. Once the joint angles at the target position have
been calculated using inverse kinematics, the robot arm instantly moves there and twists its hand axis
to pick the fruit.

9 AI-based tractor autopilot for intelligent farming
In the face of a persistent labor crisis in agriculture, tractor autopilot has the potential to save farmers
time and money while automating formerly manual tasks in a precise manner. Three primary subsystems
make up the tractor autopilot system. A vision or perception system transforms footage from cameras
mounted on the machine into beneficial characteristics like the location and orientation of the plants
before harvest, for example. Deep learning with supervision is used to create the perception system.
Afterward, the vehicle has a human action-coding system that tells it when to raise or drop its cutting
arm, among other things. This was created utilizing supervised deep learning. Finally, a feedback control
system also transforms high-level vehicle motions into hydraulic motor instructions that are supplied to
and activate the machine using motors. Traditional control technologies were used to build this. AgGPS
Autopilot system (Trimble, California, USA) is a new introduction of autopilot system. The AgGPS
Autopilot system is linked with satellites for row-crop operations and automatically guides tractors within
inches. The driver may turn off the system by turning the wheel. Redundant computers independently
examine various system sensors, values, end-of-row alarms, and operator alerts. The system’s core is a
high-performance Trimble GPS navigator. There is an AgGPS 214 Real-Time Kinematic receiver, an
AgGPS 70 Remote Display and a Logger attached to the controller. Row crops, including cotton and
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Figure 7: Harvesting target apple (Source: Onishi et al., 2019).

vegetables, are the primary focus of the AgGPS Autopilot system’s initial iteration.

10 Challenges and future scopes
The adoption of various cognitive solutions will significantly impact the future of agriculture. However,
the absence of easy solutions for smoothly integrating and embedding AI-based automation in agriculture
is a fundamental hurdle for mainstream adoption by common farming communities because they need
more time or digital know-how to delve into the world of complicated technology-based solutions
independently. Researchers consistently improve their discoveries and concepts to make them precise,
approachable, and marketable. Accessible autonomous decision-making and predictive solutions are
still in their infancy for typical agricultural communities, so the solutions on the market need to be
more accurate. Applications need to be more reliable if we will fully explore AI’s immense potential in
agriculture (Slaughter et al., 2007). Then, it can handle quick environmental changes, assist real-time
decision-making, and acquire contextual data efficiently.

11 Conclusion
According to recent findings, AI-enabled agricultural digitalization has progressed from the idea to
the implementation stage. Recent advances in IoT and drone-based automation have greatly and
effectively increased agricultural systems’ resource usage efficiency and significantly curtailed many of
their difficulties. The high cost of various cognitive solutions like AI-based autopilot tractors for smart
and precision farming currently on the market is one of the primary difficulties. For the technology
to be accessible to the common farming communities, the solutions must be accurate, affordable and
user-friendly. The solutions would be more accessible to farmers if they were built on an open-source
platform, lowering the entry barrier. In order to anticipate future issues in agricultural automation
techniques, data collected by numerous sensors must be handled and analyzed using AI and machine
learning technologies.
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